6空間情報センター 第51号 2025年9月発行

【目次】

- 1. すぐに使える!!オンライン電子納品システム「MY CITY CONSTRUCTION」の ご紹介
- 2.上位アクセス状況(集計期間:2025.7.1-8.31)
- 3. 最新のお知らせ
- 4. FME で建物 LOD1 を作成する方法
- 5. 【ご案内】PLATEAU アカデミー受講者募集
- 6.【募集】G 空間情報センターオリジナルクリアファイルに掲載させてください『未来に残したい日本 の構造物』写真募集!

1. すぐに使える!!オンライン電子納品システム「My City Construction」のご紹介

一般社団法人社会基盤情報流通推進協議会

佐藤 真優

1. はじめに

近年、国土交通省における「DX アクションプラン」や「令和 5 年度からの BIM/CIM 原則適用」などのデータやデジタル技術を積極活用する施策が加速しています。地方公共団体などでも、点群データの取得や BIM/CIM 等のデータの作成が進められています。さらに「国土交通省インフラ分野のオープンデータの取組方針」により、データのオープン化による新たなサービスの創出に焦点が当たりました。しかし、これらのデータの一元管理や電子納品成果の利活用は、未だに進んでいない状況です。

そこで、効率的な納品と成果品の利活用促進を支援する仕組みである、オンライン電子納品システム「My City Construction」について紹介します。このシステムは、初期構築費用不要で、地方公共団体で採用しやすい仕組みとなっています。

Geospatial.jp Newsletter No.51 2025

2. オンライン電子納品システム「My City Construction (MCC)」とは

(一社)社会基盤情報流通推進協議会が運用主体として提供するオンライン電子納品システム(My City Construction(以下、MCC)※)は、業務・工事等の受注者がインターネット上で、電子納品成果をアップロードすることで納品を完了することができるサービスです。国や一部の地方公共団体で導入されている受発注者間の情報共有システムと連携する機能も有しており、成果品データの移し替え等をせずに納品することも可能です。

※MCC は、国土交通省建設技術研究開発助成制度(平成 29-30 年度)の支援を受け、東京大学生産技術研究所(研究代表:関本義秀研究室)、株式会社建設技術研究所、(一社)社会基盤情報流通推進協議会の3者が主体となり開発、試行を行い、令和2年度より本格運用を開始。

図1:MCC の仕組み

3. MCC の利用状況

現在、静岡県・山口県・茨城県・鳥取県で本運用されるとともに、山形県・熊本県・静岡市においてもオンライン電子納品の本運用を予定しております。現在 MCC には、6,000 件を超える業務・工事の案件が778法人によりオンライン電子納品で登録されています(令和7年7月22日現在)。

オンライン電子納品とは? 活動内容 2022年度 2021年度 2020年度 2019年度以前

MCCの概要 MCCの運営主体 MCCの利用効果【発注者・受注者】

近年、国土交通省における「I-Construction」などの態策が本格的に始まったことを容量に、地方自治体などの公共工事の現場に関わって、点群データやUAVなどによる撮影データ等からなる三次元データがますます取得されていくと考えられています。一方、こうしたデータの利活用は始まったがリであるととちに、これまで行われてきた電子輸品保集についても、例えば新規建設工事と維持修稿工事といった異なる工事間でのデータ利用についてもまだ地をいない現状にあります。その国土とは、今までの電子輸品保事が発注者側の電子輸品保管管理システムにきちんと登録されなかったり、DVDやカルーレイといった電子媒体単位で管理され、これらの蓄積されたデータを円滑に活用することが困難な状況にあると考えられます。

そこでキンステムは、突生者が疾患曲に電子動品収表とアンルローチなどで、気料アーデビルが撮影アーザーの思いアータと円飛しかに二乗水・柴無することで、スーノファーヴについてはなど間間報センダーから投棄中制をは、自治や単位でも民用しなり、 でも民用し参すい修工ストから出給的なオンテイン型の電子輸品を入すた (Mo Vic Construction) を設計・構築することを目指しています。 本ンステムの開発ならびに定直実験にあたっては、国土交通者建設技術研究開発的成制度(平成29-30年度)の支援を受け、東京大学生産技術研究所(研究代表:関本義秀研究室)、株式会社建设技術研究所、(一社)社会基盤情報流過推進協議会の3者が主体となり行われ、その後、令和2年度より本格運用に入っています。

オンライン電子納品実施数 *1	実施受注法人数 *2	実施自治体数 *2
6046件	778法人	21自治体

図2:MCCのサイト:https://mycityconstruction.jp/

4. MCC の特徴 (メリット)

MCC には、「オンライン電子納品」「保管管理」「オープンデータ」の機能を有しており、以下のメリットがあります。

1 電子納品成果をブラウザ上からアップロードすることで納品が可能 【オンライン納品の機能】

ブラウザ上でMCCにログインし、ドラッグ&ドロップで納品物をアップロードすることができます。

「差し替え等の手間が省ける!」「電子媒体作成にかかるコストが削減できる!」「操作が簡単!」等、好評いただいてます。

2 成果品の保管管理システムとしても利用可能 【オンライン保管管理の機能】

アップロードした成果品は、10年間MCCに保管します。

受注者および発注者機関は、自身の電子納品成果品をいつでも検索・ダウンロードできます。

3 電子納品成果品をすぐにオープンデータ化可能 【オープンデータの機能】

電子納品成果品は、受発注者が合意の上で公開設定することで(成果物の一部指定も可能)、オープンデータとして MCC上にて公開できます。 <u>点群データなどのデータを納品と同時に公開</u>でき、多くの方に利用されています。 MCCは、国土交通省が進めている「国土交通データプラットフォーム」とも連携し、データ利活用の促進を図ってます。

図3:MCC の特徴

5. MCC の日々進化

MCC の普及に向けて、地方公共団体のメンバを中心に産官学の方にお集まりいただき、3 か月に1 回の頻度で MCC 研究会を開催しています。その中で地方公共団体等の委員の方や MCC の利用者よりいただいたご意見を元に、MCC の機能改良の検討を行っています。最近では、データの取得やニーズが多くなった点群データの可視化や、LGWAN 環境での利用を開始しました。また、施設情報の活用による検索性の向上の検討など、利用者にとって使いやすい仕組みを目指し、MCC は日々進化しています。

図4:MCCで点群データを可視化した一例

リンク先: https://mycityconstruction.jp/products/9965

6. MCC を利用したい地方公共団体の皆様へ

地方公共団体が MCC を導入する際、システム開発等の初期投資は必要なく、直ぐに利用を開始できます。試行的実施であれば無償で利用可能です。

順次、地方公共団体の参加を募集しております。

MCC の取り組みにご興味のある方、導入をご検討の方は、以下にお気軽にご連絡ください。

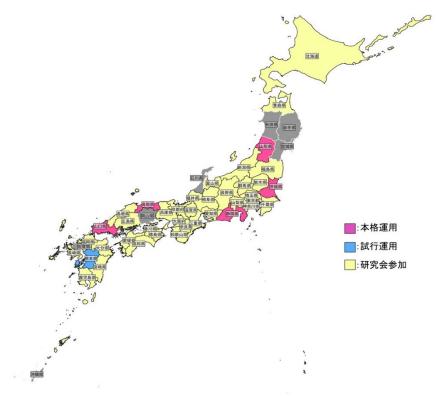


図5:研究会参加自治体

■本件お問い合わせ先

担当:藤津、田中、佐藤 Email:mcc-contact@aigid.jp

2.上位アクセス状況(集計期間:2025.7.1-8.31)

登録ユーザー数	120,933 名
期間アクセス数	796,035
登録組織数	715 件
データセット数	14,617 件
ファイル数	96,448 件

人気のデータセット

1	VIRTUAL SHIZUOKA 静岡県 中・西部 点群データ
2	3D 都市モデル(Project PLATEAU)東京都 23 区
3	さいたま市 Minecraft ワールドデータ(マイクラ)
4	林野庁・CS 立体図(能登地域 2024)
5	3D 都市モデル(Project PLATEAU)渋谷区(2023 年度)
6	VIRTUAL SHIZUOKA 静岡県 富士山南東部・伊豆東部 点群データ
7	3D 都市モデル(Project PLATEAU)大阪市(2024 年度)
8	3D 都市モデル(Project PLATEAU)新宿区(2023 年度)
9	3D 都市モデル(Project PLATEAU)港区(2023 年度)
1 0	3D 都市モデル(Project PLATEAU)横浜市(2024 年度)

Geospatial.jp Newsletter No.51 2025

3. 最新のお知らせ

G空間情報センターの最新のお知らせはコチラ

最終更新順データセット一覧はコチラ

*リンクを開く際、少しお時間がかかる場合があります。

4. FME で建物 LOD1 を作成する方法

アサミ情報システム株式会社 峯上 佳丈

はじめに

アサミ情報システム(以下、当社)では PLATEAU 業務に関わる 3D モデル作成や CityGML の作成を行っております。

当社では PLATEAU の CityGML を作成する為のデータ変換ツールとして FME というソフトフェアを利用しています。FME は CityGML を作成する為だけではなく 3D モデルの作成にも活用する事ができます。

今回は、3D モデルを作り始めたエンジニアの方向けに FME を活用した建物の LOD1 の作成手順をご紹介いたします。

1. フットプリントの作成方法(都市計画基本図を想定)

都市計画基本図の建物面は、図郭境界で図形が分割されていることが多いです。これらを本来の一つの建物面に復元しないと、正しい 3D 都市モデル(LOD1 以降)になりません。また、中庭を持つ建物では、中庭の面と建物面からドーナツポリゴンを構成する必要があります。

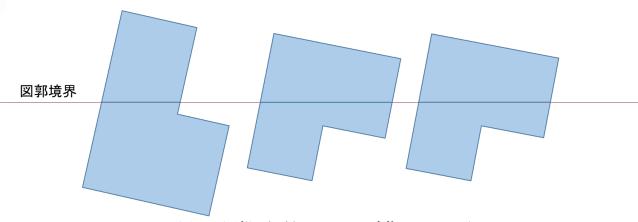


図1:図郭で切断されている建物のイメージ

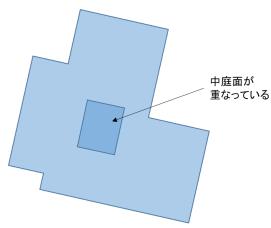


図2:中庭面と建物面が重なる建物のイメージ

本章では、その前処理を FME で実装する方法を下記のワークスペース例を用い、詳細に説明します。

1.1 図郭間で切断された建物を結合

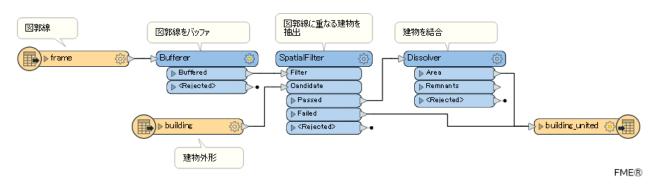


図3:図郭間で切断された建物結合のワークスペース例 ※1

- (1) Bufferer (Buffer Distance: 0.03m ※1) → 図郭線を微小バッファ
- (2) SpatialFilter → Bufferer した図郭線に重なる建物面を抽出
- (3) Dissolver (Group By:建物種別、図形区分などの全属性 ※2) → 図郭線と重なる建物面かつ、全ての属性が同じ値を持つ面同士を一体化

※1: Bufferer の Buffer Distance は SpatialFilter での抽出状況を確認し適宜調整します。

※2:同一建物を識別するキーがある場合は、そのキーを使って Dissolver で一体化することで処理 を簡略化できます。

1.2 中庭による建物面の重なりからドーナツを作成

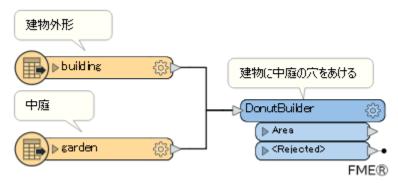


図4:建物面の重なりからドーナツを作成するワークスペース例

DonutBuilder (Drop Holes: Yes) ※3 → 建物面がほかの建物面に内包される場合はその内包された面を穴とするドーナツポリゴンを作成

※3: DonutBuilder は島ポリゴン(ドーナツの入れ子)にも対応していますが想定通りの出力結果 であるかは確認を推奨します。

2. 属性付与

3D 化の前に属性を付与します。フットプリントの 3D 化後は、空間一致に基づく対応付けにひと手間が必要になる為、2D 段階で都市計画基礎調査の建物利用現況や都市計画区域などから属性を付与します。本章では、最小ワークスペース例を通じて建物利用現況の属性付与について説明します。

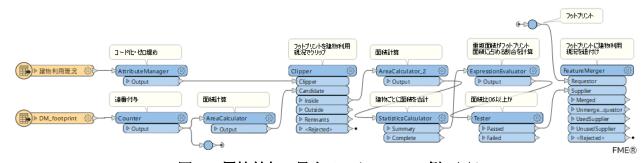


図5:属性付与の最小ワークスペース例 ※4

- (1) AttributeManager → 属性正規化:コード化/ゼロ埋め
- (2) Counter → フットプリントに事前に処理で使用する連番 (_bldg_count2) を付与
- (3) AreaCalculator → フットプリントの面積 (area) を計算
- (4) Clipper (Overlapping Clippers: Clip Original Candidates、Merge Attributes) → フットプリントを建物利用現況でクリップ
- (5) AreaCalculator (Area: _area_clip) → Clipper の inside に対して、面積 (_area_clip) を再計算

- (6) StatisticsCalculator (Group By: _bldg_count2 ,_area、Attribute: _area_clip、Sum) → 同一建物で面積 (_area_clip) の合計を計算
- (7) ExpressionEvaluator (@Value(_area_clip.sum) / @Value(_area)) → 交差した面積がフットプリントの面積に占める割合 (_result) を計算
- (8) Tester (result >= 0.6 ※5) → 面積比が 0.6 以上のみに絞り込み
- (9) FeatureMerger (Requestor/Supplier: _bldg_count2) → 事前に設定しておいた連番を使って 面積比が閾値以上になった建物利用現況の属性情報を対応づけ

※4:最小ワークスペースである為、3D 都市モデル標準作業手順書 C.11.2.6 (都市計画基礎調査 〈建物利用現況〉の付与)に準拠した属性付与を推奨します。

※5:面積比の閾値は各自治体の特性に応じて、適宜変更します。

3. フットプリントから立ち上げ(DEM/DSM 活用)

LOD1 の押し出し高さは、地形の起伏や樹木の影響を考慮しないと過大・過小な形状を生みます。 底面の高さは DEM から作成した TIN 相当の基準面の最小値を用い、上面は DSM の中央値を用いる と外れ値に頑健です。最終の押し出し高さは DSM の Z(median) – DEM の Z(min)で求められます。 本章ではフットプリントから立ち上げる手順を下記のワークスペース例を用い、詳細に説明します。

3.1 底面の高さ (min)

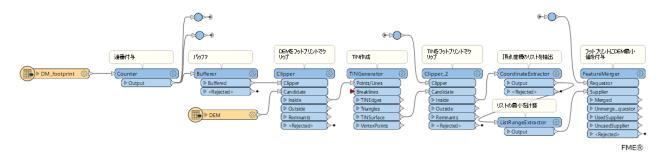


図6:底面の高さを算出するワークスペース例

- (1) Counter → フットプリントに処理で使用する連番(_fp_count)を付与
- (3) Clipper (Overlapping Clippers: Clip Original Candidates、Merge Attributes) → DEM をバッファしたフットプリントでクリップ
- (4) TINGenerator (Group By: _fp_count) → クリップした DEM から TINSurface を作成
- (5) Clipper (Group By: _fp_count) → 作成した TINSurface を Bufferer 前のフットプリントで 再度クリップ
- (6) CoordinateExtractor → クリップした TINSurface から頂点座標のリスト (indices{}) を取得
- (7) ListRangeExtractor (Source List Attribute: _indices{}.z) → リストの最小を計算 (_min)
- (8) FeatureMerger (Requestor/Supplier: _fp_count) → 事前に設定しておいた連番を使って DEM (TIN) の最小値をフットプリントに付与

※6:処理時間を短縮する為にバッファしたフットプリントでクリップを行います。

3.2 立ち上げ高さ(DSM の中央値(_indices{0}.z.median))

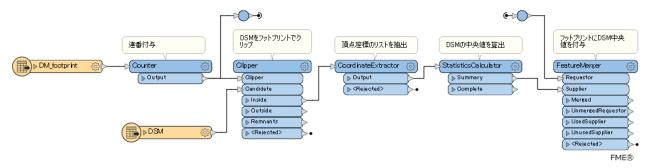


図7:立ち上げ高さを算出するワークスペース例

- (1) Counter → フットプリントに処理で使用する連番 (_fp_count2) を付与
- (2) Clipper (Group By: _fp_count2) → DSM をフットプリントでクリップ
- (3) CoordinateExtractor → DSM の頂点座標を取得
- (4) StatisticsCalculator (Group By: _fp_count2、Attribute: _indices{0}.z、Median) → フットプリントごとに DSM の中央値を算出 (_indices{0}.z.median)
- (5) FeatureMerger (Requestor/Supplier: _fp_count2) → 事前に設定しておいた連番を使って DSM の中央値をフットプリントに付与

3.3 押し出し (LOD1)

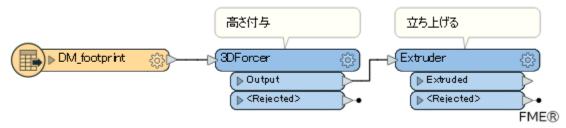


図8:押し出しによりフットプリントを立ち上げるワークスペース例

- (1) 3DForcer (Elevation: min) → 2D ポリゴンに高さを付与して 3D ポリゴン化
- (2) Extruder (Distance:@Value(_indices{0}.z.median) @Value(_min) ※7) →建築物上面高さ (DSM の中央値) –接地面高さ (DEM (TIN) の最低値) で算出した立ち上げ高さで LOD1 を上方向に押し出し
- ※7: Distance がマイナスになる場合や、微小になる場合は3D 都市モデルではジオメトリエラーとなります。

3.4 高さの乖離対策(樹木等で高さが過大/過小)

障害物や樹木の影響により、実際の高さと立ち上げ高さが乖離する場合があります。

例えば、下記のようなケースです。

•過大:DSM に樹冠が混入し、立ち上げ高さが実際の建物より大きい

•過小:障害物で屋根が十分写っておらず、立ち上げ高さが極小

対応策としては、3D 都市モデル標準作業手順書の表 C-55 (LOD1 の押し出し高さ)に基づき、 塔状比などの指標で外れを検知し、目視確認や補正ルール(区分的な上限・下限)を適用します。

4. ジオメトリエラーの解消

LOD1で見られるジオメトリエラーは、大きく分けて"素材であるフットプリントの形状不備"、"高さ算出の失敗(中央値が取れず極小高さになる等)"のいずれかまたは両方に起因します。工程の末端で発見すると手戻りが大きい為、検査→分岐→再計算の流れを組み込み、押し出し前に異常を摘出します。

4.1 発生源の整理

検出されたジオメトリエラーの内容から発生源を特定します。

- •フットプリント由来:外周の自己交差、頂点重複、面の重なり
- •高さ由来:立ち上げ高さが極小/異常(中央値の取得失敗)

4.2 フットプリント由来の修正方法

- (1) Geometry Validator(頂点重複:Duplicate Consecutive Points、自己交差:Self-Intersections in 2D)で修正
 - →Geometry Validator でリペアできないものは手修正を行います。
- (2) AreaGapAndOverlapCleaner で面の重なりを修正
 - →面の重なりのほかに面同士の隙間も埋めてしまう為、面の重なりのみ対応したい場合は該 当の面だけを抽出した状態で実行するなどの工夫が必要です。

4.3 高さ由来

- (1) Tester(@Value(_indices{0}.z.median) @Value(_min) < 1) を適用

 →立ち上げ高さが 1m 未満の場合、正しい高さを取得できていない恐れがあります。
- (2) 高さが取得できない場合の対応として、3D 都市モデル標準作業手順書では、次のような方法が示されています。

『都市計画基礎調査の建物利用現況に含まれる「高さ」や建築確認申請書類等に記載される「建築物の高さ」を使用してもよい。また、そのほかの高さの取得方法として、都市計画基礎調査等に含まれる建物階数を使用して建築物の高さを推定する方法がある。これは、階高(3m や 4m)に建物階数を乗算し、建築物の高さとする方法である。点群データや建築確認申請書類等の既存資料が得られない場合に、便宜的な対応として、このような推定を行うことも考えられる。』

Geospatial.jp Newsletter No.51 2025

階高と建物階数を用いて立ち上げ高さを推定する場合は、Extruder (Distance: 階高×建物階数)とすることで実装可能です。

最後に

当社では 3D モデルの作成や CityGML の作成をはじめ、様々な GIS データの作成・活用も行っております。


もしお困りごとなどありましたら当社の問い合わせフォームよりお気軽にご相談ください。

※FME®を使用。FME®は Safe Software Inc.の登録商標です。

■お問い合わせ先

アサミ情報システム株式会社 https://www.asamisun.com/contact

5. 【ご案内】PLATEAU アカデミー受講者募集

昨年に引き続き、今年も PLATEAU アカデミーが開催されます。3D 都市モデル整備に取り組みたいという事業者向けの内容です。

お申込みは、9月26日(金)まで。

詳細はこちら


6.【募集】G 空間情報センターオリジナルクリアファイルに掲載させてください 『未来に残したい日本の構造物』写真募集!

G空間情報センターオリジナルクリアファイルに掲載させてください

『未来に残したい日本の構造物』 写真募集!

この度、G空間情報センターのオリジナルクリアファイルの掲載写真を刷新することとなりました。つきましては、バージョン3として新たに掲載する写真を広く募集致します。

イベント等で配布する G 空間情報センターのオリジナルクリアファイルの刷新に伴い、掲載写真を募集させていただきます。

写真が好きな家族やご友人にもぜひシェアしてください☆

応募締切: 2025 年 10 月 15 日(水) 17 時受信分まで

テーマ :未来に残したい日本の構造物 応募方法:応募専用フォームまたはメール お問合せ:will-office@aigid.jp 担当:保坂

詳細は下記募集要項をご確認ください。

募集要項(PDF)

応募はこちら (Google Forms)

G 空間情報センターお役立ち情報

- ◆ G 空間情報センターF A Q は <u>こちら</u> 法務省登記所備付地図データ関連の情報等、よくあるお問い合わせを掲載しております。
- ◆ G空間情報センターの YouTube チャネルをご活用ください☆
 G空間情報センターの使い方解説や、最新データセットの公開ご案内等、動画でご案内しております。チャンネル登録いただきますと、新しい動画の公開通知等が取得可能です。ボルご活用

ります。チャンネル登録いただきますと、新しい動画の公開通知等が取得可能です。ぜひご活用ください。

◆ G 空間情報センターサイトからの**お問い合わせ**は、該当のデータセット名と URL を併せてご連絡いただくとスムーズです。

可視化データ例募集!

G空間情報センターでは、現在メールマガジンに掲載させていただける可視化データ事例を募集中です。

G空間情報センターに掲載されているデータで可視化イメージを作成された方、ぜひこの機会に G空間情報センターメールマガジン読者にシェアしていただけませんか?

掲載の折には、細やかながらお礼を差し上げます。

■ご連絡先

メールマガジン担当:保坂 hosaka@aigid.jp

ご意見・ご要望について

G 空間情報センターは、高度な地理空間情報社会の実現と皆さまの事業の発展に寄与・貢献できることを目標としています。

当センターへのご要望、ご意見、ご助言等ございましたら、遠慮なくご連絡ください。

最後までお読みいただき、ありがとうございました。

- G 空間情報センターのユーザーアカウント登録は、こちら
- G空間情報センターのご要望、ご意見は、こちら

G空間情報センター

一般社団法人 社会基盤情報流通推進協議会(AIGID)

〒151-0053 東京都渋谷区代々木 1-10-5-304

 $Email: \underline{info@geospatial.jp}$

※当ニュースレターの内容、テキスト、画像等の無断転載・無断使用を固く禁じます。